
Practical performance comparison
of all-pairs shortest path algorithms

Andrej Brodnik
University of Primorska

University of Ljubljana

Marko Grgurovič
University of Primorska

Problem

• Directed graphs.

• Non-negative edge lengths.

• Find shortest paths between every pair of
vertices (APSP).

2

Algorithms: Floyd-Warshall

• Standard dynamic programming formulation.

FOR k=1 to n

FOR i=1 to n

FOR j=1 to n

W[i,j] = MIN(W[i,j], W[i,k]+W[k,j])

ENDFOR

ENDFOR

ENDFOR

3

Algorithms: Floyd-Warshall

• Standard dynamic programming formulation.

FOR k=1 to n

FOR i=1 to n

 IF (W[i,k] == ∞)

 continue;

FOR j=1 to n

W[i,j] = MIN(W[i,j], W[i,k]+W[k,j]);

ENDFOR

ENDFOR

ENDFOR

4

Algorithms: Dijkstra

• A single-source algorithm.

• Visits vertices in increasing distance from
source.

• Solves APSP as separate single-source
problems.

• Use priority queues (PQ) for best result.

5

Algorithms: Dijkstra

• Let a candidate (shortest) path be any path
satisfying some condition C.

• Dijkstra-like algorithms will push candidate
paths into a PQ and pop to retrieve the next
shortest path.

• E.g. (Dijkstra) extend a path 𝜋 with (u,v) if:

– 𝜋 is empty

– 𝜋 is a known shortest path

6

Algorithms: Hidden Paths
[Karger et al., ’94]

• Modifies Dijkstra to solve APSP.

• Use a single large PQ and discover paths in
increasing distance from any source.

• Key idea: extend a path 𝜋 with (u,v) if:

– 𝜋 is empty

– 𝜋 and {(u,v)} are known shortest paths.

7

Algorithms: Hidden Paths

• Running time is 𝑂 𝑚∗𝑛 + 𝑛2 lg 𝑛

• 𝑚∗ is the number of essential edges.

– Any non-essential edge can be removed from G,
and the APSP solution will be the same.

– 𝑚∗ = 𝑂 𝑛 lg 𝑛 in expectation and whp in
complete graphs with random weights. [Hassin &
Zemel, ’85]

8

Algorithms: Uniform Paths
[Demetrescu et al., ’04]

• Very similar to Hidden Paths.

• Stricter condition: extend a path 𝜋 with (u,v) if:

– 𝜋 is empty

– Every proper subpath of 𝜋 + (u,v) is a shortest path.

• |UP| = number of paths whose proper subpaths
are shortest paths.

• Runs in 𝑂 𝑈𝑃 + 𝑛2 lg 𝑛

• |UP| = 𝑂 𝑛2 in expectation and whp in complete graphs
with random weights. [Peres et al., ’10]

9

Algorithms: Propagation
[Brodnik & G., ’12]

• General idea: each vertex is allowed to
examine the (sorted by distance) shortest path
lists of its neighbors, but nothing else!

• At each step of the algorithm, one shortest
path for each vertex is discovered (in
increasing distance from source).

10

11

𝑣

𝑣, 0 | $

𝑢

𝑤

𝑞

𝑞, 0 | $

𝑢, 0 | $

𝑤, 0 | $

1

5

3 1

• Consider vertex 𝑣.

• Red = pointers (blue = out. edges for 𝑣)

• A pointer is moved right if the element
pointed to is not viable (shorter path known).

Algorithms: Propagation

12

• i=1, running

Cand: (u,5)

Cand: (w,3)

Algorithms: Propagation

𝑣

𝑣, 0 | $

𝑢

𝑤

𝑞

𝑞, 0 | $

𝑢, 0 | $

𝑤, 0 | $

1

5

3 1

13

• i=1, running

Cand: (u,5)

Cand: (w,3)

Algorithms: Propagation

𝑣

𝑣, 0 | $

𝑢

𝑤

𝑞

𝑞, 0 | $

𝑢, 0 | $

𝑤, 0 | $

1

5

3 1

14

• i=1, finished

Algorithms: Propagation

𝑣 𝑢

𝑤

𝑞
1

5

3 1 𝑣, 0 | 𝑤, 3 | $ 𝑢, 0 | 𝑞, 1 | $

𝑤, 0 | 𝑢, 1 | $

𝑞, 0 | 𝑣, 2 | $

15

𝑣 𝑢

𝑤

𝑞
1

5

3 1 𝑣, 0 | 𝑤, 3 | $ 𝑢, 0 | 𝑞, 1 | $

𝑤, 0 | 𝑢, 1 | $

𝑞, 0 | 𝑣, 2 | $

• i=2, running

Cand: (u,5)

Not viable.

Algorithms: Propagation

16

𝑣 𝑢

𝑤

𝑞
1

5

3 1 𝑣, 0 | 𝑤, 3 | $ 𝑢, 0 | 𝑞, 1 | $

𝑤, 0 | 𝑢, 1 | $

𝑞, 0 | 𝑣, 2 | $

Algorithms: Propagation

• i=2, running

Cand: (u,5)

Cand: (u,4)

17

𝑣 𝑢

𝑤

𝑞
1

5

3 1 𝑣, 0 | 𝑤, 3 | $ 𝑢, 0 | 𝑞, 1 | $

𝑤, 0 | 𝑢, 1 | $

𝑞, 0 | 𝑣, 2 | $

Algorithms: Propagation

• i=2, running

Cand: (u,5)

Cand: (u,4)

Algorithms: Propagation

18

𝑣, 0 | 𝑤, 3 |(𝑢, 4)$

𝑞, 0 | 𝑣, 2 |(𝑤, 5)$

𝑢, 0 | 𝑞, 1 |(𝑣, 3)$

𝑤, 0 | 𝑢, 1 |(𝑞, 2)$

• i=2, finished

𝑣 𝑢

𝑤

𝑞
1

5

3 1

Algorithms: Propagation

19

𝑣

… … … … … … … … .

𝑢

𝑤

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$

• What about when the k-th shortest path
depends on a neighbors k-th shortest path?

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$

Algorithms: Propagation

20

𝑣

… … … … … … … … .

𝑢

𝑤

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$

• What about when the k-th shortest path
depends on a neighbors k-th shortest path?

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$

Not viable.

Not viable.

Algorithms: Propagation

21

𝑣

… … … … … … … … .

𝑢

𝑤

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$

• What about when the k-th shortest path
depends on a neighbors k-th shortest path?

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$

Not viable.

Cand. found

Algorithms: Propagation

22

𝑣

… … … … … … … … .

𝑢

𝑤

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$

• What about when the k-th shortest path
depends on a neighbors k-th shortest path?

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$

Cand. found

???

Algorithms: Propagation

• Require (any) single-source algorithm to be
provided.

• Use provided algorithm to solve the tricky
cases when they occur via reduction (on a
pruned graph).

• Overall, algorithm runs in 𝑂(𝑛𝑇𝑠 𝑚∗, 𝑛 +
𝑚 lg 𝑛) where 𝑇𝑠 𝑚, 𝑛 is the running time of
the provided alg.

23

Experiments

• Implemented in C++.

• Ran on an i7-3930K@3.20GHz with 64GB RAM
on Ubuntu 12.04.5 LTS.

• Using pairing heaps for PQ from the Boost
library.

• Generate random graphs from 512-16k
vertices with varying densities and consider:
– Unweighted

– Uniform random weights in (0,1)

24

25

26

Thanks for your attention!

Questions

