Practical performance comparison
of all-pairs shortest path algorithms

Andrej Brodnik Marko Grgurovic

University of Primorska University of Primorska

University of Ljubljana

Problem

* Directed graphs.
* Non-negative edge lengths.

* Find shortest paths between every pair of
vertices (APSP).

Algorithms: Floyd-Warshall

e Standard dynamic programming formulation.

FOR k=1 to n
FOR i=1 to n
FOR j=1 to n
W[i,j] = MIN(W[i,3], W[i, k]+W[k,3])
ENDFOR
ENDFOR
ENDFOR

Algorithms: Floyd-Warshall

e Standard dynamic programming formulation.

FOR k=1 to n
FOR i=1 to n
IF (W[i,k] ==)
continue;

FOR j=1 to n
W[i,j] = MIN(W[i,j], W[i, k]+W[k,3j]);
ENDFOR
ENDFOR
ENDFOR

Algorithms: Dijkstra

A single-source algorithm.

Visits vertices in increasing distance from
source.

Solves APSP as separate single-source
problems.

Use priority queues (PQ) for best result.

Algorithms: Dijkstra

* Let a candidate (shortest) path be any path
satisfying some condition C.

* Dijkstra-like algorithms will push candidate
paths into a PQ and pop to retrieve the next
shortest path.

e E.g. (Dijkstra) extend a path © with (u,v) if:
— 1T IS empty
— 1t is a known shortest path

Algorithms: Hidden Paths
[Karger et al., '94]

 Modifies Dijkstra to solve APSP.

* Use a single large PQ and discover paths in
increasing distance from any source.

* Key idea: extend a path m with (u,v) if:
— 1T IS empty
— 1 and {(u,v)} are known shortest paths.

Algorithms: Hidden Paths

 Running time is 0(m*n + n®lgn)
* m” is the number of essential edges.

— Any non-essential edge can be removed from G,
and the APSP solution will be the same.

—m* = 0(nlgn) in expectation and whp in
complete graphs with random weights. [Hassin &
Zemel, '85]

Algorithms: Uniform Paths

[Demetrescu et al., '04]

Very similar to Hidden Paths.
Stricter condition: extend a path m with (u,v) if:

— 1T IS empty
— Every proper subpath of m + (u,v) is a shortest path.

|UP| = number of paths whose proper subpaths
are shortest paths.

Runsin O(|UP| + n?1gn)

|UP| = 0(n?) in expectation and whp in complete graphs
with random weights. [Peres et al., "10]

Algorithms: Propagation
[Brodnik & G., "12]

* General idea: each vertex is allowed to
examine the (sorted by distance) shortest path
lists of its neighbors, but nothing else!

* At each step of the algorithm, one shortest
path for each vertex is discovered (in
increasing distance from source).

10

Algorithms: Propagation

Consider vertex v.
Red = pointers (blue = out. edges for v)

A pointer is moved right if the element
pointed to is not viable (shorter path known).

Algorithms: Propagation

* |=1, running

Algorithms: Propagation

* |=1, running

Algorithms: Propagation

e i=1, finished

@0 w3) s |

| (u,1) | S

14

Algorithms: Propagation

* |=2, running

,0) | w,3) 1§ _ L=

| (u,1) | S

748 Not viable.

15

Algorithms: Propagation

* |=2, running

,0) | w,3) 1§ _ L=

114 Cand: (u,4)

16

Algorithms: Propagation

* |=2, running

,0) | w,3) 1§ _ L=

748 Cand: (u,4)

17

Algorithms: Propagation

e =2, finished

(0.0 | (v,2)(w,5)

®,0) | w,3)|wbs N

(w,0) | 1(q,2)$

18

Algorithms: Propagation

 What about when the k-th shortest path
depends on a neighbors k-th shortest path?

O

o | (V—2, Ok—2) | (W1, Ok=1) IS

o | (Vi—2, 05—2) | (Vk—1, O—1) | S

19

Algorithms: Propagation

 What about when the k-th shortest path
depends on a neighbors k-th shortest path?

)o Not viable.
I N TCSIE

Not viable.

| | (Vk—1, Ok-1)|S

20

Algorithms: Propagation

 What about when the k-th shortest path
depends on a neighbors k-th shortest path?

)o Not viable.
I S

E

Cand. found

E

21

oo | Vg2, 1) |

Algorithms: Propagation

 What about when the k-th shortest path
depends on a neighbors k-th shortest path?

0 27?
o | (Vk—2, Ok —2) | (V=1, Ok—1) |

Cand. found

E

22

oo | Vg2, 1) |

Algorithms: Propagation

e Require (any) single-source algorithm to be
provided.

* Use provided algorithm to solve the tricky
cases when they occur via reduction (on a

pruned graph).

 Overall, algorithm runs in O(nT,(m*,n) +
m lgn) where T,(m, n) is the running time of
the provided alg.

23

Experiments

Implemented in C++.

Ran on an i7-3930K@3.20GHz with 64GB RAM
on Ubuntu 12.04.5 LTS.

Using pairing heaps for PQ from the Boost
library.

Generate random graphs from 512-16k
vertices with varying densities and consider:

— Unweighted
— Uniform random weights in (0,1)

24

time (microseconds)

Uniform. 8192 vertices

—8— Dijkstra —FH— FPropagation
—&— Uniform Paths —J}— Hidden Paths
—&— Floyd-Warshall

I S N N S SR N
1.1 1.2 1.3 14 15 1.6 1.7 1.8 1

oraph density

9 2

25

time (microseconds)

032

029

26

023

Unweighted, 8192 vertices

— 9 Dijkstra
—+— Propagation
—&— Uniform Paths
—J— Hidden Paths
—&— Floyd-Warshall

O Iy O O A B
.1 1.2 13 14 15 1.6 1.7 1.8 1.9

eraph density

26

Thanks for your attention!

Questions

