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Problem 

• Directed graphs. 

• Non-negative edge lengths. 

• Find shortest paths between every pair of 
vertices (APSP). 
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Algorithms: Floyd-Warshall 

• Standard dynamic programming formulation. 

FOR k=1 to n 

FOR i=1 to n 

FOR j=1 to n 

W[i,j] = MIN(W[i,j], W[i,k]+W[k,j]) 

ENDFOR 

ENDFOR 

ENDFOR 
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Algorithms: Floyd-Warshall 

• Standard dynamic programming formulation. 

FOR k=1 to n 

FOR i=1 to n 

 IF (W[i,k] == ∞) 

    continue; 

 

FOR j=1 to n 

W[i,j] = MIN(W[i,j], W[i,k]+W[k,j]); 

ENDFOR 

ENDFOR 

ENDFOR 
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Algorithms: Dijkstra 

• A single-source algorithm. 

• Visits vertices in increasing distance from 
source. 

• Solves APSP as separate single-source 
problems. 

• Use priority queues (PQ) for best result. 
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Algorithms: Dijkstra 

• Let a candidate (shortest) path be any path 
satisfying some condition C.  

• Dijkstra-like algorithms will push candidate 
paths into a PQ and pop to retrieve the next 
shortest path. 

• E.g. (Dijkstra) extend a path 𝜋 with (u,v) if: 

– 𝜋 is empty 

– 𝜋 is a known shortest path 

6 



Algorithms: Hidden Paths 
[Karger et al., ’94] 

• Modifies Dijkstra to solve APSP. 

• Use a single large PQ and discover paths in 
increasing distance from any source. 

• Key idea: extend a path 𝜋 with (u,v) if: 

– 𝜋 is empty 

– 𝜋 and {(u,v)} are known shortest paths. 
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Algorithms: Hidden Paths 

• Running time is 𝑂 𝑚∗𝑛 + 𝑛2 lg 𝑛  

• 𝑚∗ is the number of essential edges. 

– Any non-essential edge can be removed from G, 
and the APSP solution will be the same. 

– 𝑚∗ = 𝑂 𝑛 lg 𝑛  in expectation and whp in 
complete graphs with random weights. [Hassin & 
Zemel, ’85] 
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Algorithms: Uniform Paths 
[Demetrescu et al., ’04] 

• Very similar to Hidden Paths. 

• Stricter condition: extend a path 𝜋 with (u,v) if: 

– 𝜋 is empty 

– Every proper subpath of 𝜋 + (u,v) is a shortest path. 

• |UP| = number of paths whose proper subpaths 
are shortest paths. 

• Runs in 𝑂 𝑈𝑃 + 𝑛2 lg 𝑛  

• |UP| = 𝑂 𝑛2  in expectation and whp in complete graphs 
with random weights. [Peres et al., ’10] 
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Algorithms: Propagation 
[Brodnik & G., ’12] 

• General idea: each vertex is allowed to 
examine the (sorted by distance) shortest path 
lists of its neighbors, but nothing else! 
 

• At each step of the algorithm, one shortest 
path for each vertex is discovered (in 
increasing distance from source). 
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11 

𝑣 

𝑣, 0  | $ 

𝑢 

𝑤 

𝑞 

𝑞, 0  | $ 

𝑢, 0  | $ 

𝑤, 0  | $ 

1 

5 

3 1 

• Consider vertex 𝑣.  

• Red = pointers (blue = out. edges for 𝑣) 

• A pointer is moved right if the element  
pointed to is not viable (shorter path known). 

Algorithms: Propagation 
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• i=1, running 

Cand: (u,5) 

Cand: (w,3) 

Algorithms: Propagation 

𝑣 

𝑣, 0  | $ 

𝑢 

𝑤 

𝑞 

𝑞, 0  | $ 

𝑢, 0  | $ 

𝑤, 0  | $ 

1 

5 

3 1 
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• i=1, running 

Cand: (u,5) 

Cand: (w,3) 

Algorithms: Propagation 

𝑣 

𝑣, 0  | $ 

𝑢 

𝑤 

𝑞 

𝑞, 0  | $ 

𝑢, 0  | $ 

𝑤, 0  | $ 

1 

5 

3 1 
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• i=1, finished 

Algorithms: Propagation 

𝑣 𝑢 

𝑤 

𝑞 
1 

5 

3 1 𝑣, 0  | 𝑤, 3  | $ 𝑢, 0  | 𝑞, 1  | $ 

𝑤, 0  | 𝑢, 1  | $ 

𝑞, 0  | 𝑣, 2  | $ 
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𝑣 𝑢 

𝑤 

𝑞 
1 

5 

3 1 𝑣, 0  | 𝑤, 3  | $ 𝑢, 0  | 𝑞, 1  | $ 

𝑤, 0  | 𝑢, 1  | $ 

𝑞, 0  | 𝑣, 2  | $ 

• i=2, running 

Cand: (u,5) 

Not viable. 

Algorithms: Propagation 
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𝑣 𝑢 

𝑤 

𝑞 
1 

5 

3 1 𝑣, 0  | 𝑤, 3  | $ 𝑢, 0  | 𝑞, 1  | $ 

𝑤, 0  | 𝑢, 1  | $ 

𝑞, 0  | 𝑣, 2  | $ 

Algorithms: Propagation 

• i=2, running 

Cand: (u,5) 

Cand: (u,4) 
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𝑣 𝑢 

𝑤 

𝑞 
1 

5 

3 1 𝑣, 0  | 𝑤, 3  | $ 𝑢, 0  | 𝑞, 1  | $ 

𝑤, 0  | 𝑢, 1  | $ 

𝑞, 0  | 𝑣, 2  | $ 

Algorithms: Propagation 

• i=2, running 

Cand: (u,5) 

Cand: (u,4) 



Algorithms: Propagation 
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𝑣, 0  | 𝑤, 3 |(𝑢, 4)$ 

𝑞, 0  | 𝑣, 2 |(𝑤, 5)$ 

𝑢, 0  | 𝑞, 1 |(𝑣, 3)$ 

𝑤, 0  | 𝑢, 1 |(𝑞, 2)$ 

• i=2, finished 

𝑣 𝑢 

𝑤 

𝑞 
1 

5 

3 1 



Algorithms: Propagation 

19 

𝑣 

… … … … … … … … . 

𝑢 

𝑤 

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$ 

• What about when the k-th shortest path 
depends on a neighbors k-th shortest path? 

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$ 



Algorithms: Propagation 
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𝑣 

… … … … … … … … . 

𝑢 

𝑤 

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$ 

• What about when the k-th shortest path 
depends on a neighbors k-th shortest path? 

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$ 

Not viable. 

Not viable. 



Algorithms: Propagation 
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𝑣 

… … … … … … … … . 

𝑢 

𝑤 

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$ 

• What about when the k-th shortest path 
depends on a neighbors k-th shortest path? 

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$ 

Not viable. 

Cand. found 



Algorithms: Propagation 
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𝑣 

… … … … … … … … . 

𝑢 

𝑤 

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$ 

• What about when the k-th shortest path 
depends on a neighbors k-th shortest path? 

… |(𝑣𝑘−2, 𝛿𝑘−2)|(𝑣𝑘−1, 𝛿𝑘−1)|$ 

Cand. found 

??? 



Algorithms: Propagation 

• Require (any) single-source algorithm to be 
provided. 

• Use provided algorithm to solve the tricky 
cases when they occur via reduction (on a 
pruned graph). 

• Overall, algorithm runs in 𝑂(𝑛𝑇𝑠 𝑚∗, 𝑛 +
𝑚 lg 𝑛) where 𝑇𝑠 𝑚, 𝑛  is the running time of 
the provided alg. 
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Experiments 

• Implemented in C++. 

• Ran on an i7-3930K@3.20GHz with 64GB RAM 
on Ubuntu 12.04.5 LTS. 

• Using pairing heaps for PQ from the Boost 
library. 

• Generate random graphs from 512-16k 
vertices with varying densities and consider: 
– Unweighted 

– Uniform random weights in (0,1) 
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Thanks for your attention! 

 



Questions 


